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Intermittency in the Joint Cascade of Energy and Helicity
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The statistics of the energy and helicity fluxes in isotropic turbulence are studied using high
resolution direct numerical simulation. The scaling exponents of the energy flux agree with those of
the transverse velocity structure functions through refined similarity hypothesis, consistent with
Kraichnan’s prediction. The helicity flux is even more intermittent than the energy flux. Consistent
with this observation, the spatial helicity-flux structures are finer than those of energy flux and more
tubelike in geometry.
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We have simulated the NS equation in a 512 domain at
Re� � 210. The kinetic energy is forced in the first two

FIG. 1. Energy and helicity spectra. In the inset is shown
normalized energy and helicity fluxes.
The classical theories of fully developed turbulence [1]
were dominated by the concept of the energy cascade to
small scales. However, kinetic energy is not the only local
conserved integral of the inviscid equations of motion,
the three-dimensional (3D) incompressible Euler equa-
tions. Since the classical theories were developed, it was
discovered [2,3] that there is a second quadratic invariant,
the helicity:

H�t� �
Z
dxu�x; t� �!�x; t�: (1)

Here u is the velocity field and ! � r� u is the vorticity
field. Nonzero mean values of the helicity are now known
to occur naturally in a wide variety of geophysical flows,
such as hurricanes and tornadoes [4]. It was proposed in
Refs. [5,6] that, if the large scales of the flow are helical
(parity noninvariant), then there should be a joint cascade
of both energy and helicity to small scales. In that case,
the helicity spectrum as well as the energy spectrum
should satisfy a �5=3 law in the inertial range: H�k� �
CH�	=
1=3�k�5=3. Just as for a passive scalar, the spec-
trum of helicity was predicted to be linearly proportional
to its mean flux 	 [7]. In the Gledzer-Ohkitani-Yamada
(GOY) shell models, it has been found numerically in
Ref. [8] that the scaling exponents of the energy flux are
nearly identical to those for 3D Navier-Stokes (NS) pre-
cisely for the members of the family which have a ‘‘hel-
icity’’ invariant. The statistics of the ‘‘helicity flux’’ itself
have also been studied in the GOY models [9] and in a
related class of helical shell models [10]. However, so far
the statistics of the helicity flux have yet to be explored in
3D turbulence. It is the purpose of this Letter to study the
statistics of energy and helicity fluxes in 3D hydrody-
namical turbulence by direct numerical simulations, both
with and without a nonzero mean helicity.
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shells [11]. To add positive mean helicity into the flow, we
rotate the real and imaginary parts of the velocity vector
Fourier amplitude also in the first two shells to be always
perpendicular to each other with the same handedness
[12]. The NS equation was solved using a pseudospectral
parallel code with full dealiasing and time stepping by a
second-order Adam-Bashforth method. A statistical sta-
tionary state was achieved after ten large-eddy turnover
times. In Fig. 1 we plot the energy and helicity spectra of
this final steady state, in the case with mean helicity
input. (See Ref. [13] for appropriate definitions.) Both
spectra have about a decade and a half where a �5=3
power law holds. In the inset we show for the same
simulation the mean spectral fluxes of energy and helicity
as a function of wave number, normalized by mean en-
ergy dissipation " � hjruj2i and mean helicity dissipa-
tion 	 � 2hru:r!i. There is about a decade of inertial
range where these fluxes are constant.
2003 The American Physical Society 214503-1
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FIG. 2. Structure functions (a) of energy flux and (b) of
helicity flux. The dashed lines show constant-flux range 30 �

=� � 80. u0 is rms velocity.
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FIG. 3. Scaling exponents of transverse velocity increments,
energy flux, and helicity flux.
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The importance of a local energy flux for studying
intermittency in the 3D energy cascade was first empha-
sized by Kraichnan [14], who used banded Fourier series
to define such a quantity. The local flux 	E;
�x� measures
transfer of energy into small length scales <
 at a fixed
point x in physical space. Kraichnan proposed a refined
similarity hypothesis (RSH) for this quantity, distinct
from Kolmogorov’s for volume-averaged energy dissipa-
tion [15]. The new RSH relates the scaling exponents �p of
the velocity structure functions, defined as hj�
ujpi �

�p , to the scaling exponents �p of the energy flux,
defined by hj	E;
j

pi � 
�p . Here j�
uj is the magnitude
of the vector velocity increment. Precisely, the RSH rela-
tion is �p � p

3 � �p=3. Equivalently, this relation may be
stated as equality �p � �Ep , with the latter defined by

hj
 �	E;
j
p=3i �
�

E
p (2)

for L� 
 � �, where L is the integral length and � is
the dissipation length. To test this relation here, we use
instead a smooth filter to differentiate the large-scale and
small-scale modes, as in our earlier work [16]. This is the
same method used in the large-eddy simulation modeling
scheme [17]. A low-pass filtered velocity u � G
  u
with scales <
 removed obeys the equation

@tu� �u � r�u � f� rp� r � � (3)

in the limit of high Reynolds number, where viscous
terms can be neglected. Here f; p are the filtered forcing
and pressure, respectively, and � � u � u� u � u is the
turbulent stress, or spatial momentum transport induced
by the eliminated small-scale turbulence. From this equa-
tion, a balance equation is easily derived for the local
density e
 � 1

2 juj
2 of the large-scale energy [16]:

@te
�x; t� � r � JE;
�x; t� � FE;
�x; t� �	E;
�x; t� (4)

in which the current JE;
 represents space transport of the
large-scale energy, FE;
 � f � u is the energy input from
the force, and

	E;
�x; t� � �ru�x; t�:��x; t� (5)

is the energy flux out of the large-scale and into the small-
scale modes. See also Refs. [18,19].

In the same way, we can derive a balance equation for
the density h
 � u �! of the large-scale helicity:

@th
�x; t� � r � JH;
�x; t� � FH;
�x; t� �	H;
�x; t�:

(6)

Here JH;
 is a space transport of large-scale helicity and
FH;
 is the input from the forcing, while

	H;
�x; t� � �2r!�x; t�:��x; t� (7)

is the local helicity flux to small scales <
. A set of
scaling exponents �Hp corresponding to the helicity cas-
cade can be defined for L� 
 � � by
214503-2
hj
2	H;
j
p=3i � 
�

H
p : (8)

In Fig. 2 we plot the structure functions of the energy
and helicity fluxes that appear on the left-hand sides of
Eqs. (2) and (8) for integer values of p from 1 to 8.

We use the extended self-similarity procedure [20] to
extract the scaling exponents �Ep and �Hp from plots
against hj
	E;
j=u03i. The results are shown in Fig. 3.
Together with these we plot the scaling exponents �Tp of
the transverse velocity structure functions. The transverse
velocity differences are known to be more intermittent
214503-2
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than the longitudinal ones [21,22] and thus must domi-
nate in the structure function for which Kraichnan’s RSH
was proposed, which includes all velocity components.
As may be seen from Fig. 3, the scaling exponents �Tp and
�Ep are quite close for each p, in agreement with
Kraichnan’s RSH [14,16]. However, the scaling exponents
for helicity flux are smaller, �Hp < �Ep , indicating that the
helicity flux is intrinsically more intermittent than the
energy flux, i.e., the departures from K41 scaling are
larger. This is consistent with the picture of the helicity
acting similarly as a passive scalar, since it is well known
that the scaling exponents of the scalar are smaller than
those of the advecting velocity itself [23,24]. It is worth
emphasizing that the relation between the scaling expo-
nents of energy flux and helicity flux found here is exactly
the opposite of that observed in the shell models. In
Ref. [9] it was shown numerically that the helicity flux
in the GOY shell model is less intermittent than the
energy flux there, while in [10] it was shown for the
helical GOY3 model that energy and helicity fluxes are
equally intermittent. Thus, despite the fact that the energy
flux statistics of the helicity-conserving shell models are
very similar to those of 3D Navier-Stokes [8], neverthe-
less the helicity-flux statistics of these shell models are
qualitatively different from those of Navier-Stokes.

Fluctuations of the fluxes 	E;
�x; t� and 	H;
�x; t� in
the joint cascade can also be described by the single-point
probability density functions (PDF’s), which we have
calculated at various values of 
 in the inertial range.
In Fig. 4 are plotted these PDF’s for 
=� � 64. The PDF
of the energy flux agrees with the results reported earlier
in Ref. [19]. There is an obvious skewness with a long tail
to the right, indicating the forward cascade of energy
preferentially to smaller scales. To our knowledge, the
result on the helicity-flux PDF in Fig. 4 is entirely new. In
contrast to the PDF of the energy flux, it is nearly sym-
metric. This is because the helicity is indefinite in sign
 ∆ / η =64 
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and can be both positive and negative, while kinetic
energy is always positive. Therefore, the long tail of
helicity flux to the left does not indicate backward trans-
fer of positive helicity but instead forward transfer of
negative helicity. This argument can be made precise
by means of the helical decomposition of the velocity
field [25]. One sets u � u� � u� with u��x; t� �P

ka��t�h��k�eik�x, where hs�k� for s � � are eigenvec-
tors of the curl: ik� hs�k� � sjkjhs�k�. As shown in
Ref. [25], the � modes carry only positive helicity and the
� modes only negative helicity. If we likewise decom-
pose vorticity as ! � !� �!�, we can define

	�
E;
�x; t� � �ru��x; t�:��x; t�;

	�
H;
�x; t� � �2r!��x; t�:��x; t�;

(9)

and then 	s
E;
 represents flux of energy from the large-

scale s modes into the small scales and 	s
H;
 represents

the like quantity for helicity, with s � �. See Ref. [26].
In Fig. 5(a) are plotted the 1-point PDF’s of 	�

H;
 for
nonzero mean helicity with the inset for zero mean hel-
icity. It may be seen that the PDF’s of the � mode and �
mode are skewed to the right, indicating that helicity
from these two modes prefers to cascade forward to
smaller scales. Likewise, in Fig. 5(b) the energy flux in
both � and � modes is skewed to the right. There is
somewhat less skewness in the � mode because relatively
little energy is being injected into that channel for the
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FIG. 5. 1-point PDF’s of (a) � helicity fluxes and (b) �
energy fluxes for different mean helicity inputs 	 when 
=� �
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FIG. 6 (color online). Three-dimensional view of fluxes for

=� � 16:0. Left: helicity flux 	H;
=	rms

H;
 � 2:0; right: en-
ergy flux 	E;
=	

rms
E;
 � 2:0.
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case 	 > 0. [The same effect is seen also for helicity flux
in Fig. 5(a).] In contrast, in the inset in Fig. 5(b) is shown
the � and � energy fluxes for the case 	 � 0. Here equal
amounts of energy "� � "� are injected in both chan-
nels, and the two PDF’s are equally skewed. As discussed
in detail in Ref. [26], this will also be asymptotically true
in a long inertial range for 	 > 0, because the nonlinear
transfer from � modes to � modes will tend to equalize
the amount of energy and helicity in each and restore
reflection symmetry at high wave numbers.

To see the geometric structures of the fluxes, we present
a three-dimensional view of energy-flux and helicity-flux
isosurfaces at 
=� � 16:0 in Fig. 6. Only 643 mesh points
around the maximum energy flux region are shown. 	rms

E;

and 	rms

H;
 are the rms energy flux and helicity flux,
respectively. We can see that structures of helicity flux
and energy flux are quite different. Helicity flux forms
more tubelike structures than energy flux, while the latter
has flatter and coarser structures. Similar tubelike and
sheetlike structures have been observed for other 
’s and
they are particularly clear at smaller scales. This is con-
sistent with the greater intermittency of helicity flux.
There also appears to be a high degree of correlation
between the regions of large energy and helicity flux,
(1)

(2)

(1) : ΠH ∈ [0.0, 3σH] 
(2) : ΠH ∈ [3σH, 6σH]
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FIG. 7. Normalized energy flux PDF’s conditioned on helic-
ity flux when 
=� � 64, 	 � 0.
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with such structures adjacent in space. However, these
regions do not overlap. In fact, large fluctuations of one
flux are suppressed in the regions where the other is large.
For example, in Fig. 7 are shown two PDF’s of energy
flux, one conditioned on helicity flux in the range
�0:0; 3"H� and the other in the range �3"H; 6"H�. We
can see that energy flux is more intermittent when the
helicity flux is small than when the helicity flux is large.
Clearly, the tail of the PDF with the large helicity flux is
reduced compared to that with the small helicity flux.
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